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In the subtectorial space, momentum is transported by the fluid to the stereocilia of the inner hair cell
(IHC), resulting in bending of the hair bundle. The fluid must pass through the v-shaped arrangement
of the outer hair cell (OHC) stereocilia and is ”squeezed” between the tectorial membrane (TM) and
the reticular lamina, especially due to the Hensen’s stripe. Here, we analyze the flow field by means
of numerical discretization. Since the geometry is complex, the finite-element-method is employed.
An implementation is developed which allows computation in the frequency domain, based on a pres-
sure stabilised velocity formulation. Matrix coupling with the structure is accomplished and a single
solution step of the whole system matrix is sufficient to retrieve the displacement field of the fluid and
structural parts. The proposed method allows a solution of the fluid-structure interaction in the subtec-
torial space within a reasonable time. For a two-dimensional mesh with 120,000 degrees of freedom
of a complete cross-section of the organ of Corti, including stereocilia, the solution time is less than
20 seconds on a convential PC.

1. Introduction

Here, a novel technique is proposed to model fluid-structure-interaction problems which are
common in the field of inner-ear mechanics. It is assumed that the non-linear term in the
Navier-Stokes equation can be neglected. In other words, the Reynolds number is smaller
than unity, so that a computation of acoustic streaming is not necessary [1]. Although the
dimensions are small, we assume that a continuum approach is still valid for the geometrical
dimensions of the order of one micrometer. The no-slip condition is used at the boundaries,
since the Debye-length is about one nanometer [2] and, therefore, much smaller than the
geometry.

Furthermore, we perform a discretisation of the linear viscous fluid with near-
incompressibility. In this respect, the only assumptions are that the amplitudes are small
and the wavelength long. Estimations about the flow field are not necessary, as they are
in lumped models for the fluid in a gap [3, 4]. The linear approach allows a much faster
solution than with staggered techniques, such as those used by Givelberg and Bunn [5].

After presenting the method, it is applied to a two-dimensional cross-section model of
the guinea-pig at a characteristic place-frequency of 0.8 kHz. Coiling effects of the cochlea
are neglected [6, 7], because we are examining vibration responses from the boundaries of
the subtectorial space, directly in response to somatic electromechanical forces from the
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OHCs.

2. Methods

2.1. Fluid-Structure-Interaction

For small amplitudes the non-linear term of the Navier-Stokes equations can be neglected.
If the problem is isothermal and variations of pressure, p, and density, %, are small com-
pared to their mean value, a nearly incompressible fluid can be assumed [8]. The mass-
conservation equation

1
K
∂p
∂t

+ ∇ · ~v = 0 (1)

relates the time derivative of the pressure divided by the compressibility K to the divergence
of the velocity vector ~v. The linear part of the momentum equation without volume forces

%
∂~v
∂t

= −∇ p + ∇ · τ (2)

relates the acceleration to the gradient of pressure and stresses. A Stokes-fluid is described
by

τ = µ

(
∇~v + (∇~v)T − 2

3
∇ · ~v

)
(3)

where µ is the dynamic viscosity. The unknown variables are the pressure, p, and the ve-
locities, ~v.

For an efficient coupling with the solid structure, the velocity is substituted by the time
derivative of the displacement ~u

~v =
∂~u
∂t

. (4)

Applying a finite element discretisation to Eqns. (1,2,4) yields a set of linear equations for
the unknown degrees of freedom:
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}
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0

}
(5)

for given forces f. Here (̇ ) denotes the first time derivative ∂( )/∂t and (̈ ) the second. The
matrix A describes the shearing and is proportional to the dynamic viscosity µ. V ensures
the nearly incompressibile material and depends on the compressibility K. C is the coupling
between pressure and velocity and M is the inertia and depends on the fluid density %.
Details are given by Zienkiewicz et al. [9]. After elimination of the pressure variable, the
system

M ü + A u̇ + C V−1 CT u = f (6)

describes a fluid simply in terms of displacement. This representation allows a direct im-
plementation in a finite element solver for structure problems and leads to a monolithic
fluid-structure approach. A time-harmonic Ansatz is possible for the linear system. Thus,
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for excitation with a single frequency, the system given by Eqn. (6) must be solved only
once. Here, this fluid element is based on quadratic shape functions for displacement and
geometry. Linear shape functions are used for the pressure to ensure stability. The element
is implemented as an user-defined element in Ansys [10].

The correct implementation is validated by the analytical solution for the oscillating
motion of an infinite cylinder normal to its axis [11]. This problem involves inertia and
viscous forces on a curved geometry. There is good agreement in the entire flow field,
provided the unsteady boundary layer is resolved. The comparison is plotted in Fig. 1 for
the amplitude and phase of the circumferential and radial velocity component.
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Fig. 1. Comparison of the velocities around an oscillating cylinder normal to its axis with a Womersley number
of 10. Velocity profile in radial direction, 45o off the main axis. Analytical solution for the peripheral ( ) and
radial ( ) direction and numerical results at the nodes ◦ and ×, respectively. (A) Amplitude. (B) Phase angle.

2.2. Geometry

The numerical model is built on geometrical data from the guinea-pig cochlea at a char-
acteristic place-frequency of 0.8 kHz. Data derive from live-stained (FM 1-43, Invitrogen)
and TM-stained (Lectin SBA Conjugates, Invitrogen) preparations and stacks of images
obtained from laser scanning microscope Leica SP5 (Fig. 2). The geometry is manually
constructed and represented by splines. Each cell type and the fluid spaces are grouped
into closed areas. A set of mechanical properties is assigned and then meshed with finite
elements (quadratic shape functions).

2.3. Properties

The elasticity of the material is based on data used by Steele and Puria [4] and adjusted
to match experimental data from different sources. The measurements of Cooper [12] give
an indication for the stiffness distribution of the basilar membrane. The OHCs are matched
to data from Frank et al. [13] and recent impedance measurements [14]. The stiffness of
the hair bundle is based on values from Strelioff and Flock [15]. The impedance along
the reticular lamina is similar to values measured by Scherer and Gummer [16]. The fluid
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Fig. 2. Cross section of the guinea-pig organ of Corti at a characteristic place-frequency of 0.8 kHz. (A) Live
staining with FM 1-43 (Invitrogen). Image is extracted from a stack. (B) Geometry and mesh for the computation.
Here, the different grey levels just indicate different areas and do not correspond to physical properties.

damping was not sufficient to match these data and additional material damping in the
Hensen and sulcus cells was necessary. According to the experiments of Ghaffari et al. [17],
the TM is highly viscous. The vibrational measurements at the boundary of the subtectorial
space by Nowotny and Gummer [18] serve here as reference for the motion around the IHC
stereocilia. The motion of the cross-section is compared with measured displacements [19,
20].

The dynamic viscosity of the fluid is 1 Pa msa, as measured at room temperature for
Hanks solution [1]. The density for all materials is set to 0.001 ng/µm3. The OHCs are
modelled with a piezoelectric wall and are filled with incompressible fluid. The elasticity
of the basilar membrane is set to yield a resonance frequency of 0.8 kHz for a constant
pressure load radially across the membrane. Comparisons are made with experimental vi-
bration data from the TM and reticular lamina in an in-vitro preparation in which the TM
was intact, with the longest OHC stereocilia embedded in the TM [18].

3. Results

The numerical method was applied to solve a fluid-structure interaction in the organ of
Corti. The two-dimensional mesh has about 60,000 nodes. Ansys [10] was used as finite
element software. The approach is based on non-moving meshes and has no limitations due
to small amplitudes.

To model the motion of the organ of Corti in response to somatic electromechanical
force from the OHCs, a sinusoidal voltage is applied across the OHC wall. Due to the
assigned piezoelectric property of the cell wall, the applied voltage sinusoidally modulates
the wall thickness. In turn, the axial length of the cell is modulated because the intracellular
fluid is incompressible. This excitation causes a pattern of motion, as shown in Fig. 3.

The inner and outer pillar cells are not connected to each other in the longitudinal

aThe following basis units are used: mass in nanogram (ng), length in micrometer (µm), time in millisecond (ms).
Thus, the pressure is in Pa.
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Fig. 3. Displacement of the organ of Corti at a characteristic place-frequency of 0.8 kHz (A) and a close up
around the IHC stereocilia (B), at the time instant of maximum OHC contraction.

direction. Thus, there can be fluid flow through the rows of OHCs and pillar cells. The fluid
spaces are connected to model this here in two dimensions.

The IHC stereocilia bending amplitude and direction depend on the size of the gap
between Hensen’s stripe and the reticular lamina. The motion of the subtectorial space at
the IHC is characterized by an anti-phasic transversal motion of the reticular lamina and
TM, as also found experimentally [18]. For a sufficiently small gap (here ≈ 2µm ), motion
of the reticular lamina towards the TM at the IHC causes deflection of the IHC stereocilia
in the excitatory (depolarizing) direction.

4. Discussion

Fluid flow in the subtectorial space cannot be investigated without considering the motion
of the neighbouring structures. The proposed method allows fast computation of strongly
coupled fluid-structure interaction problems. For a two-dimensional model of the organ of
Corti with around 120,000 degrees of freedom – that is, with two degrees of freedom for
each of the 60,000 nodes –, the solution of the problem requires less than 20 seconds for one
frequency on a conventional PC (AMD Athlon 64 3500+, 2GB RAM, SuSE Linux 10.3).

Application of the proposed method to a two-dimensional model of the organ of Corti
reveals deflection of the IHC stereocilia in the excitatory direction for contraction of the
OHC. This motion is caused by a squeezing flow between Hensen’s stripe and reticular
lamina. This phase relation is found experimentally by Chiaradia et al. [21] and the influ-
ence of Hensen’s stripe has been addressed by Steele and Puria [4].
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